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a b s t r a c t

This paper presents a conceptual design for an agent-based bilateral residential land market. The design
includes interactions between multiple buyers and sellers (household agents, developers, and rural land
owners) and two local feedbacks to land value—price expectation formation based on local neighbor-
hoods and spatial externalities. To address the methodological challenges inherent in the transition from
equilibrium-based analytical models to agent-based simulation, we combine traditional deductive opti-
mization models of behavior at the agent level with inductive models of price expectation formation. Rel-
ative to previous models, our proposed model is more closely linked to urban economics; contains a
wider range of drivers of land use (LU); and addresses alternative models of division of gains from trade
and determination of transaction prices, including models of bid and ask price formation. Our proposed
approach is also closely linked to geographic cellular LU models, potentially uniting the strengths of these
two disciplinary perspectives.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Land-use change (LUC) is influenced by interactions between
social and biophysical landscapes, with economic development,
demographic growth, and shifting social conditions occurring con-
currently with land-cover and climate change. Land itself has many
roles: property or investment, an administrative unit, soil, a store
of mineral resources, or terrain for ecosystems functions (Randall
& Castle, 1985). Consequently, different disciplines attempt to ex-
plain drivers of LUC from their own perspectives, and within disci-
plines, LUC is modeled using a variety of approaches: theoretical
and empirical, spatial and a-spatial, micro-and-macro-scale. The
result is a diversity of explanations of LU development and pre-
scriptions of optimal policies for LU.

The economic perspective investigates how scarce resources
such as land can be allocated efficiently between competitive uses,
and the land market (LM) is viewed as the main allocation mecha-
nism. Yet, many models of LUC exclude economic drivers and/or
LM interactions. This deficit may occur because of the difficulties
inherent in integrating static equilibrium-based a-spatial eco-
nomic land market models (LMM) Drienerlolaan 5, 7522 NB, with
the dynamic, heterogeneous spatial environments of LUC models.

This paper presents a conceptual design for an agent-based
bilateral residential LM that includes multiple heterogeneous and

interacting buyer and seller agents. We outline a proposed set of
approaches to address the methodological questions that are
raised in the transition from equilibrium-based analytical theoret-
ical models to an agent-based simulation. Relative to previous
work in economics and cellular modeling, our proposed model is
more closely grounded in urban economics, but moves that per-
spective further from equilibrium-based modeling. Although we
begin from the perspective of economics, our modeling framework
emphasizes local spatial interactions and linkages between local
processes and heterogeneous patterns of LUC, opening the possibil-
ity for coupling the LMM with other spatially explicit, process-
based socioeconomic and ecological models. While we focus
narrowly on modeling LMs, we hope that the discussion will be
of interest to the broader community of LU modelers, whose activ-
ities represent and integrate a diversity of disciplinary perspectives
and research applications (Benenson & Torrens, 2004b; Brown &
Xie, 2006; Crawford, Messina, Manson, & O’Sullivan, 2005;
Klosterman & Pettit, 2005; Koomen, Rietveld, & Nijs, 2008;
Koomen, Stillwell, Bakema, & Scholten, 2007; Nelson & Geoghegan,
2002; Turner II, Lambin, & Reenberg, 2007; Veldkamp & Verburg,
2004; Walsh & McGinnis, 2008). Our paper lays out a series of open
questions and a set of proposed approaches, which we hope will
stimulate discussion, debate, and new work by the LU modeling
and spatial economics communities.

The paper proceeds as follows. We briefly review related litera-
ture, including analytical equilibrium-based and cellular simula-
tion models of urban systems and other agent-based market
models. Next, we discuss LMs in the context of agent-based
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modeling (ABM). We then present the conceptual bilateral ABM of
residential LMs. First, trading agents and their interactions are de-
fined. Next, approaches to modeling agents’ underlying values for
buying or selling, the potential deviations between those values
and their bid or ask prices, and the determination of a transaction
price are discussed. A conceptual model of developers’ profit max-
imization behavior is presented. We conclude with a discussion of
a potential path for transferring the model to an empirical context.

2. Previous residential land market models

2.1. Land in economic theory

The concept of land rent is central to different economic schools
studying land (Randall & Castle, 1985). In theory, in a LM, the
transaction price for land reflects the highest value of any agent
in the market, the land rent. Under the assumptions of homoge-
neous land and a representative agent, the amount of land con-
sumed for a particular use and its market price can be modeled
as an a-spatial equilibrium of demand and supply (Arnott, Braid,
Davidson, & Pines, 1999; Buurman, Rietveld, & Scholten, 2001)
(Fig. 1).

Classic economic theory treated land as a factor of production in
addition to capital and labor. Later Ricardo (1821/2001) formalized
the relationship between the quality (fertility) of land and land
rent, with higher rents for higher-quality/productivity land. Fol-
lowing Randall and Castle (1985) the Ricardian rent (W) can be ex-
pressed as

WiðFÞ ¼ pi � ai � f ðL; FÞ �x � L ð1Þ

where F stands for fertility, pi is the market price for the agricultural
good produced using labor input (f (L,F)), x is the wage level per
unit of labor, and ai is a proportionality factor characterizing the
particular crop growth.

The model of von Thünen (1826/1966) formalizes the relation-
ship between transportation costs for agricultural goods to the
central business district (CBD) and land rents, demonstrating
how the location of agricultural activity (in terms of distance (di)
from the market located at the CBD) depends on the cost of pro-
duction (ci), transportation costs (ti) and market prices (pi) for an
agricultural good (i). The per-acre bid price for land is

WiðdiÞ ¼
ðpi � ci � ti � diÞ

si
ð2Þ

where si is the acre of agricultural land a farmer occupies. The mod-
el assumes that land will be allocated to the highest bidder, with the
extensive margin at which a bid for one crop exceeds the next-low-
est valued crop defining locations of bands of crop types in concen-
tric circles around the CBD.

The Von Thünen model was extended for urban LU by Alonso
(1964). According to his bid-rent theory, households choose loca-
tions a certain distance from the CBD based on the utility they re-
ceive from land and other consumption goods under their budget

constraint. The Muth-Mills housing model extends the Alonso
model to account for density at each location (by introducing a
housing producer who decides the structural density of develop-
ment) in addition to the rent gradients (see Strazsheim (1987)
for review). Other spatial analytical models have been developed
to examine the effects of open-space amenities and spatial exter-
nalities on land rents (Caruso, Peeters, Cavailhes, & Rounsevell,
2007; Parker, 2007; Wu & Plantinga, 2003).

2.2. Cellular spatial simulation models

The limitations of analytical models for representing neighbor-
hood effects and two-dimensional patterns have led to the devel-
opment of cellular spatial simulations. These models (including
cellular automata, spatial econometrics models and ABMs) repre-
sent economic and market influences to varying degrees.

Cellular automaton models (Benenson & Torrens, 2004a) repre-
sent transportation and neighborhood influences through cali-
brated parameters, which reflect socioeconomic influences only
implicitly (Batty, Xie, & Sun, 1999; Jantz, Goetz, & Shelley, 2003;
White & Engelen, 1993). Econometric models calibrate transition
coefficients based on relationships between socioeconomic drivers
and land prices, and may use these calibrated models for simula-
tion modeling to produce spatially explicit outcome maps (Irwin
& Bockstael, 2002). The estimated coefficients of such models re-
flect but do not directly represent interactions between supply
and demand measured at some point in time.

Several cellular models include hypothetical LMs, but with pri-
mary emphasis on the demand side. The SOME and SLUCE models
allow agents to choose the property that maximizes their utility
without competition from other sellers and assume that the locat-
ing agent will outbid the current use (Brown et al., 2008). Caruso
et al. (2007) develop a sophisticated model of residential demand,
allowing relocation by renters and a competitive rental market.
However, the supply price of rural parcels is taken as fixed, and
renters are assumed to capture all gains from trade. Parker and
Meretsky (2004) represent demand a-spatially through a fixed de-
mand curve, and model the land conversion decisions of a hypo-
thetical parcel manager. Benenson (1998) uses a simple
adaptation mechanism to establish the price of houses, in which
the price of an occupied house adapts to reflect the wealth of the
occupant and the average value of neighboring houses. These fac-
tors, along with the cultural identity of neighborhoods, affect the
dissonance of residents, which in turn may motivate them to move.
Diappi and Bolchi (2008) model supply-side redevelopment deci-
sions of landlords and developers, using an exogenous potential
land rent function, but endogenous capitalized land rents based
on the state of upkeep of the property. Miller, Hunt, Abraham,
and Salvini (2004) propose two approaches to modeling commer-
cial and residential LMs. In each, supply and demand offers are
made by heterogeneous buyers and sellers. The first adjusts zonally
based prices when markets do not clear. The second determines
prices through bilateral transactions. Price expectations in the next

DEMAND SIDE
[Exogenous variables:

income, utility,
transportation costs to

the urban center ]

SUPPLY SIDE
[Exogenous variables:
agricultural land rent,

opportunity costs ]

MARKET CLEARING
[Exogenous variables:

population of the 
closed city ]

City area, Rent gradient

Bid-rent

Quantity of a 
certain type of 

land demanded

Profit expectation

Quality of land
(density of population)

Fig. 1. Schematic structure of the land market model in economics.
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round are influenced through an estimated hedonic price function.
McNamara and Werner (2008) model the hotel property market
using an adaptive model of profit expectation formation by devel-
oper agents who supply and sell hotels. Hotel owners bid to ac-
quire properties based on expected profits, with the highest
bidder winning the property. Torrens (2007) models LM interac-
tions with dynamic price updating on both the demand and supply
side, but the offer prices of residences are not formed based on
market conditions or agent preferences.

Several models of agricultural LMs model both demand and
supply decisions (Berger, 2001; Happe, Kellermann, & Balmann,
2006; Polhill, Parker, & Gotts, 2008). While these models are
becoming increasingly more sophisticated, they do not model dif-
ferences between the buyer’s willingness to pay (underlying utility
or payoffs for the land) and her bid or offer price for the land; nor
do they model differences between the seller’s willingness to ac-
cept (opportunity cost of the sale) and his ask price.

3. Agent-based models, markets, and land-use change

3.1. Why model markets with ABMs?

Driven by the desire to better represent and explore complex
economic systems, applications of ABM to economics and market
interactions are increasing (Arthur, Durlauf, & Lane, 1997; Epstein
& Axtell, 1996; Kirman & Vriend, 2001; LeBaron, 2006; Lux, 1998;
Tesfatsion, 2006). In spite of rapid growth, the field of ABM market
modeling is still relatively new. Current application areas include
financial markets, markets for pollution emissions, auctions for
the electro-magnetic spectrum, electricity markets, and on-line
e-markets (Marks, 2006). These ABMs relax traditional restrictive
assumptions of economic models:

� The concept of equilibrium is central to most economic models.
However, economic markets are dynamic adaptive systems
(Tesfatsion, 2006) and may be out of equilibrium (Arthur,
2006). The dynamic path to equilibrium can be modeled in
greater detail and out-of-equilibrium properties more fully
explored using agent-based market modeling.

� Many economic models take a representative agent approach, in
which the demand curve of one agent is extrapolated to repre-
sent the demand for the particular good in the whole economy.
The limitations of this approach, discussed by Kirman (1992),
can be overcome through ABMs’ ability to represent diverse
agent types.

� In standard economic models, agents are assumed to be rational
and have perfect information about environment. In reality
agents have bounded computational ability, memory, and per-
ception (Marks, 2006).

� Standard economic models exclude most agent–agent and
agent-environment interactions (Epstein & Axtell, 1996;
Tesfatsion & Judd, 2006). Market interactions in ABMs occur
during price formation and price negotiation. Non-market inter-
actions include externalities, information transfer, and social
networks.

3.2. Agent-based market models in practice

Market design for ABM is discussed at length by Marks (2006).
The logic of the ABM market mechanism is described by Mackie-
Mason and Wellman (2006) in three steps (Fig. 2).

LeBaron (2006) outlines fundamental questions that need to be
answered when designing markets, including what kind of good
will be traded, how the preferences of individuals will be formal-
ized, what kind of mechanism will be used to determine prices,

whether agents can learn, whether information is private or public,
how information is presented and processed, and finally what
benchmark/criteria will be used to track the operation of a market.
Reviewing previous work in financial ABM markets, LeBaron iden-
tifies several approaches to modeling determination of the market-
clearing price, including price adaptation based on the difference
between supply and demand, numerical clearing, auction mecha-
nisms, and random connection of trading partners, with trades
occurring when gains from trade are positive. In many ABM market
models, reinforcement learning algorithms at the individual agent
level are used to establish price expectations and bid/ask prices for
individual agents (Arthur, 2006; LeBaron, 2006; Tesfatsion, 2006).

3.3. Why model land markets using ABM?

The advantages of applying ABM in ecological-economic systems
are widely discussed (Bousquet & Le Page, 2004; Grimm & Railsback,
2006). The rationale for modeling LUC using ABM laid out by Parker,
Manson, Janssen, Hoffmann, and Deadman (2003) can be carried for-
ward to argue that ABMs are appropriate for modeling LMs. Because
land differs from other market goods, ABM market models devel-
oped for other applications must be further adapted to model LMs.
Drawing on previous research on LMs and our own analysis, we sum-
marize the unique features of LMs that motivate development of a
new variety of agent-based market model.

A heterogeneous commodity traded by heterogeneous agents:
Every property (land parcel/house) is immobile and has unique
attributes (soil, slope, neighborhood characteristics, and accessibil-
ity) (Buurman et al., 2001). There are several types of buyers and
sellers participating in the LM. For example, potential sellers in-
clude farmers selling agricultural land, developers supplying new
residences, and relocating households.1 These types of sellers may
have different motivations, opportunity costs, types of behavior,
and pricing strategies.2 Within the same type, buyers and sellers dif-
fer in their location preferences, motivations, resources, and
information.

Spatial and agent–agent interactions: The use of a property af-
fects the use and value of the surrounding properties through spa-
tial externalities and local price expectation feedbacks. Agents
operating in an LM are involved in both market and non-market
interactions (Grevers, 2007).

Importance of non-equilibrium dynamics: LMs are cyclic and are
rarely in equilibrium. Housing market growth, decline, and bubbles
are everyday news. These out-of-equilibrium dynamics can be
effectively explored with an ABM LM. However, LMs have slower
dynamics than other markets. The supply of land is fixed or

CONNECTING
[search for a potential

trading partner]

EXCHANGING
[the actual transaction

and payment is
accomplished]

DEALING
[negotiation of the 
transaction terms,

e.g. price negotiation]

Fig. 2. Main steps of a market transaction, the core of market mechanism
(Summarized from Mackie-Mason and Wellman (2006)).

1 In practice government often plays an important influential role in the LM. Spatial
planning policy and zoning regulations directly affect the elasticity of land and
housing supply. Taxes and subsidies applied to the area under local government
jurisdiction exert influence upon buyers and sellers choices.

2 There is a distinction between behavior of buyers and sellers in land ownership
market and tenants and landlords in rental markets. These two types of LMs are
interconnected because the market price of land and houses influence the rental price
of those. However, different models to explain location choice and market prices are
used for rental and ownership markets. In our paper we focus on ownership LMs
rather than on rental markets. We also do not distinguish between land and property
markets; implicitly, LMs refer to the market for individual residences.
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restricted by regulation in the short run (Smith, Rosen, & Fallis,
1988), limiting adjustment of the LM. Moreover, the purchase of
land is an infrequent, high transaction cost, long-term investment,3

often requiring an extensive search for buyers. As a result, relatively
few market transactions occur as compared, for example to financial
markets. Thus, price expectation formation and learning about the
behavior of other traders are slower, and traders usually form strate-
gic responses based on dynamic market conditions. Sellers and buy-
ers leave the market after a successful trade, and rarely interact
again with the same trading partner. This complicates the imple-
mentation of price learning algorithms used in commodity ABM
markets.

An ABM LM that incorporates the heterogeneity, interactions,
and non-equilibrium dynamics of real-world LMs can be useful
in many ways. ABM LMs can be used to explore the effects of het-
erogeneous agent-level drivers of LUC, such as incomes, interest
rates, social preferences, and credit availability. As discussed by
Polhill et al. (2008), by providing information about heterogeneous
land rents (private shadow values), ABM LMs may reveal areas
where growth pressure is high and deviations between private
and public shadow values of land.4 Finally, ABM LMs can be de-
signed to reflect buyer and sellers’ boundedly rational price expecta-
tions and explore the effects of adaptive price expectation updating
mechanisms.

4. Designed land markets

4.1. Conceptual scheme: tradable good and traders in the land market

Our conceptual model of an artificial LM combines rules
adapted from standard urban economics with a cellular spatial
simulation model. We move beyond previous work by implement-
ing agents’ heterogeneity, a spatially explicit setup, and direct model-
ing of price formation and market transactions. Both demand and
supply sides are represented in detail, facilitating model experi-
ments focused on the drivers of each. Our approach leads to the
emergence of heterogeneous land rent patterns without restrictive
assumptions to identify prices in equilibrium. Results from the first
implementation are reported in Filatova, Parker, and van der Veen
(2007), and further model analysis is ongoing.

Fig. 3 represents the logic of our model. Essentially, the agent le-
vel interactions illustrated in Boxes III and IV replace the top-down

market clearing conditions that define equilibrium in traditional
models (Fig. 1). Based on land characteristics (Box I) and individual
preferences, buyers and sellers form bid and ask prices for proper-
ties, which are functions of their willingness to pay (WTP) and will-
ingness to accept (WTA) (Box II), and negotiate with potential
traders over a transaction price (Box III). If negotiation is success-
ful, then the market transaction takes place (Box IV). Current trans-
action prices influence bid and ask prices in the next time period.
Moreover, as a property is converted, the altered LU feeds back into
the spatial neighborhood (Box V), through, for example, changes in
density, availability of open space, or the social characteristics of
the neighborhood.

Extensive previous theoretical and empirical research has been
conducted to identify the drivers of land value as outlined in Boxes
I and V (Anas, Arnott, & Small, 1998; Irwin & Bockstael, 2002;
Lambin & Geist, 2006). However, many open questions remain
regarding translation of the assumptions of analytical theoretical
models into spatially explicit dynamics as represented in Boxes
II–IV. We therefore focus on these dynamics and refer to previous
literature for the other aspects of the conceptual model.

The first step in analysis of a market is to define the partici-
pants. Several agent types participate on both the supply and de-
mand side (Box II, Fig. 3), including households, developers and
rural land owners as seen in Fig. 4. The market behavior of each ac-
tor in the LM is discussed below.

4.2. Reservation prices, bid and ask prices, and gains from trade

WTP and WTA for land are reservation prices for land—the max-
imum price a buyer is willing to pay for a good, and the minimum
price at which a seller is willing to sell (Fig. 5). Economic theory
suggests that reservation prices depend on preferences for charac-
teristics of the spatial good (accessibility, availability of environ-
mental amenities, neighborhood characteristics, etc.) and agents’
financial resources.

The difference between the WTP and WTA defines the gains
from trade (GFT)—the economic surplus that can be captured from
the market transaction—and the realized transaction price defines
the division of the GFT between the buyer and seller. The realized
transaction price depends on bid and ask strategies and perceived
market conditions. Current theory simply bounds, but does not di-
rectly identify, the transaction price. In representative agent mod-
els of a homogeneous good, the equilibrium market-clearing price
is assumed to be the price for all realized transactions. However,
residential land is generally sold through bilateral bidding and
negotiation. In this case, a clear distinction should be made be-
tween WTP and bid price, and WTA and ask price. Since economic
agents try to maximize their GFT, a buyer tends to set a bid price
lower than her WTP (by eb), and a seller sets his ask price higher
than his WTA (by es) (Formula (3) and Fig. 5).

Fig. 3. Conceptual scheme of the agent-based land market.

3 The fact that housing is a long-term investment implies that agents’ discount
rates and access to capital affect land purchase decisions. While we do not include
discounting explicitly in the framework presented here, the equations could easily be
modified to include intertemporal considerations.

4 The shadow value of a resource reflects the increase in payoffs at the margin that
would be provided by an additional unit of the resource. The private shadow value
reflects the increase in individual utility or profits; while the public shadow value
reflects the value to society as a whole.
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Pbid ¼WTP� eb; Pask ¼WTAþ es ð3Þ

Neither eb nor es can exceed the total GFT eb, if a transaction is to
be feasible. For example, in Fig. 5, if the buyer sets her bid price
lower than the seller’s WTA, the transaction will not occur. The
buyer’s strategic incentive is to set her bid price as close to the sell-
er’s WTA as possible, but still above. The seller has complementary
incentives; he wants to set the ask price as close as possible to the
buyer’s WTP, but still below.

In the LM, agents are heterogeneous according to their behavior
(e.g. the goal is to maximize or satisfy utility vs. profit), their re-
sources (income-constrained households vs. financial capital con-
strained developers), and in the type of land they seek to buy or
sell (existing dwellings for individual households and rural resi-
dential parcels for developers and rural land owners). Thus, agents’
WTP and WTA formation varies by sector (household/developer/
rural land owner). In the following sections, we review theoretical
research regarding reservation and bid/ask price formation for dif-
ferent types of agents and propose strategies for calculation of res-
ervation prices.

4.2.1. Buyer households (residential use)
As a starting point to model a household’s reservation price, we

return to the classical theoretical models of residential location
based on the framework proposed by Alonso (Alonso, 1964;
Strazsheim, 1987). The conventional economic approach to find a
willingness to pay for a housing unit is to solve the budget-

constrained utility maximization problem: max U(z,s,d), s.t.
z + s � R(d) = Y – T(d), where, z is a composite good, s is the quantity
of land/housing purchased, d is the distance from the city centre,
R(d) is the distance-dependent land/housing price, Y is the house-
hold’s budget, and T(d) is commuting cost at distance d. The de-
mands for the composite good and for housing as well as land
rent (R�ðd;uÞ, Formula (4)) are derived simultaneously by applying
market-clearing conditions (assuming that demand is equal to sup-
ply at equilibrium) and assuming that utility is equal for all agents
in the city.

R�ðd;uÞ � R�½Y � TðdÞ;u�

¼max
z;s

ðY � TðdÞ � zÞ
s

s:t: Uðz; sÞ ¼ u
� �

ð4Þ

This traditional method to identify the households’ willingness
to pay at each point in space, or bid-rent function, relies on
assumptions of representative agents and market equilibrium.

Economic agent-based LU models in agricultural contexts of-
ten represent the choice problem of agents as a resource-con-
strained maximization problem, with agents substituting
boundedly rational inductively estimated or dynamically evolv-
ing prices for expected prices formed through some rational
expectations mechanism (Berger, 2001; Happe et al., 2006). We
pursue a similar approach, staying conceptually close to the ana-
lytical budget-constrained utility maximization Alonso modifica-
tions that include open-space amenities, but noting that, in the
absence of restrictive equilibrium conditions that identify land
rent, individual households cannot solve for their WTP. We
therefore arrive at:

Open question 1: How can the standard equilibrium-based
Alonso model be translated for application to heterogeneous
agents in a dynamic spatial environment?

We propose four potential approaches to the problem, moving
from the least to most complex.

Approach 1: Following Gode and Sunder’s (1993) ABM mar-
kets for homogeneous goods, assume a WTP function for each
agent type, and draw randomly from that function to define a
population of trading agents. Their ‘‘Zero-Intelligence traders”
form bids by subtracting some random value from their exoge-
nously assigned WTP. The disadvantage of this approach for a
good with heterogeneous characteristics, such a spatial good, is
that WTP is the same for goods with different quality. Thus,
the bid price does not reflect location-specific amenities. This ap-
proach may suffice for highly abstract computational experi-
ments, but the potential for translation into a real-world
context is limited.

Approach 2: As in approach 1, heterogeneous WTP functions,
which depend on agent’s preferences and income, are assigned to
agents. Approach 2 essentially assumes a set of exogenous individ-
ual-level demand curves for housing, allowing property-specific
values to reflect agent-level income and preferences.

Approach 3: This approach assumes an explicit utility function
for housing that reflects preferences for proximity to the CBD (P)
and green amenities (A) and a fixed, exogenous optimal expendi-
ture share for the property Y = Yhousing – T � d (the share of an exog-
enous total housing and transport cost budget spent on the
property). Preferences can be formalized using a Cobb-Douglas
utility function (Wu & Plantinga, 2003). We then define the follow-
ing WTP function:

WTP ¼ Y � Un

bn þ Un ð5Þ

which bounds WTP by the budget constraint, and exhibits the qual-
itative properties of a traditional demand function. The parameter b
is a proxy for the prices of other goods. A buyer decides which

Fig. 4. Interaction between demand and supply side, Box II of Fig. 3.

Fig. 5. Price negotiation and division of gains from trade.
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house to bid on by randomly selecting a subset of houses that are
affordable under her budget constraint. She then chooses to bid
on the house that gives her maximum utility, with her WTP given
by Eq. (5). In applications of the first model implementation, we
implement agent heterogeneity in this context by varying the utility
weights of each good or the budget constraint for housing, and we
implement spatial heterogeneity by varying amenity levels across
space (Filatova et al., 2007). This approach may be appropriate in
highly regulated housing markets, where loans are made based on
monthly payments that represent a fixed proportion of income,
and where this constraint is binding for most agents.

Approach 4: We propose to implement an Alonso-style ap-
proach by replacing the land price defined through equilibrium
assumptions with a parametric adaptively estimated land rent r

^
,

whose estimation may reflect the boundedly rational price expec-
tations of heterogeneous buyer agents. Following traditional mod-
els, each agent solves a budget-constrained utility maximization
problem (Eq. (6)), in which the value of a residence s increases with
amenity level A and decreases with distance from the CBD d.

max Uðz; sðA;dÞÞ s:t: Y ¼ pz � zþ r
^
�sðA;dÞ þ T � d ð6Þ

The solution to this maximization problem provides optimal de-
mands for the composite good and attributes of the spatial good
(amenity levels and accessibility). These optimal solutions can be
used to derive an analytical demand curve (WTP) for housing as
a function of estimated land rent and, from that, an optimal hous-
ing budget.

The challenge in this approach comes from the need to initialize
r
^
. We propose two solutions. First, the model could be initialized

using the bid-rent values from analytical solutions to a simplified
version of the model.5 Second, the landscape could be initialized
with plausible selling prices, given agent utility functions. Agents
would form an expected rent by sampling properties selling for be-
tween 25% and 40% of their income (a standard budget metric for
lenders) and estimating prices through a hedonic regression model
(similarly to the model proposed by Miller et al. (2004)). Either
method would be likely to induce some path dependence in model
outcomes, which should be formally explored.

Expected rent must be dynamically updated. A new class of
‘‘Real Estate Agents,” who might possess differential levels of
knowledge and estimation strategies, could estimate r

^
through

learning algorithms (Arthur, 2006; Tesfatsion, 2006). As the model
runs and price levels change, expected land rent could be updated
either according to a fixed (each time the agent is active) or event
driven time schedule. (For example, a buyer may update price
expectations following a given number of unsuccessful bids.) Each
time price expectations are updated, she will re-solve her utility
maximization problem, alter her optimal budget share for housing
and shift her demand curve. This approach promises to endoge-
nously model expectation-driven price dynamics that are a prom-
inent feature of real-world housing markets, in which budget
shares on housing increase even as incomes and preferences re-
main fixed. This is accomplished while still maintaining a theoret-
ically grounded WTP and budget share for housing.

4.2.2. Modeling a buyer’s bid price
A buyer’s strategy for setting her bid price will likely depend on

her WTP and expectations for future prices. To our knowledge, few
theoretical models of these prices expectations exist. The relation-
ship between bid and ask prices are often dependent on the state of

the housing market. In perceived ‘‘sellers’” markets (when demand
exceeds supply), bid prices are often higher than ask prices. Buyers
compete against each other, raising their bids in the hope captur-
ing a desirable property. In ‘‘buyers’” markets, bids are often below
ask prices, and ask prices are often lowered over time in the hopes
of attracting a buyer. These dynamic relationships between bid and
ask prices likely drive cyclical housing market dynamics, but also
ideally should be endogenous to our model.

These dynamics lead us to the first of several questions:
Open question 2: Given a theoretical WTP, how are bid prices

set?
Drawing in part on ABMs of financial markets, we propose two

approaches for setting bid prices, which could be combined. How-
ever, they should be tested independently as well as in combina-
tion, since they may have comparable effects on market
dynamics. If effects are comparable, the simplest approach is
justified.

Approach 1: In the current model implementation, the WTP of a
buyer is adjusted depending on whether it is a buyers’ or a sellers’
market. We introduce a variable e, which serves as a proxy for the
state of the market (Eq. (7)).

Pbid ¼ PWTP � ð1þ eÞ; ð7Þ

where e = (NB�NS)/(NB + NS); NB = number of buyers and
NS = number of sellers. If the number of buyers and sellers are
equal, e = 0 and buyers bid their willingness to pay. If there are more
buyers than sellers, buyers are in a less favorable situation, and bids
will increase. Conversely, bids will decrease when sellers exceed
buyers.

This approach is easy to implement in a programming context
and potentially leads to endogenous cyclical price variations. Based
on information available through the web, Realtors and housing
market analyses, real-world agents are likely to perceive the state
of the market and the direction of market trends. A disadvantage of
this approach is the assumption that agents’ bids may exceed their
theoretical WTP. This could be remedied by normalizing the bid to
fall between WTP and an estimated WTA (consistent with Fig. 5).

Approach 2: Modification to WTP can be based on information
about recent comparable sales, average days on the market, and
the rate of change of prices. These three pieces of information
are readily available to buyers. Information on recent sales could
be used to estimate an expected sales price for the property, which
could be used to modify the agent’s bid relative to the ask price.
The bid could also be modified up or down depending on whether
prices were rising or falling. Days on the market and the rate of
change of prices would be proxies for the buyer’s perception of
competition among buyers. Essentially, Approach 2 can be viewed
as a strategic approach to pricing by the buyer. She forms her best
estimate of the highest other bid that the seller is likely to receive,
and bids no higher than this amount.

4.2.3. Modeling the seller’s decision to relocate
In the case of a single residential seller, his willingness to accept

will be determined by his opportunity cost of keeping the resi-
dence—the utility that he might gain by selling and moving.
Several studies investigate household mobility (Clark, Huang, &
Withers, 2003; Kan, 2002; van der Vlist, Gorter, Nijkamp, &
Rietveld, 2002). In a comprehensive overview of the theory of
household relocation behavior, Clark and Van Lierop (1987) distin-
guish between inter-urban and intra-urban migration. They argue
that main reasons for intra-urban migration are transitions to a
new life cycle stage, development of more attractive housing
options elsewhere, changes in the neighborhood, and a desire for
greater accessibility to central locations. Inter-urban migration is
mainly motivated by employment changes. Clark and van Lierop
describe relocation behavior as a two-stage process. A household

5 In the case of homogeneous agents and a homogeneous landscape, this
initialization should imply that the model would quickly converge to that analytical
solution. This could be an important robustness test for the model. However, we
anticipate that this model will be used primarily to analyze heterogeneous agents and
landscapes.
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first decides to move (for one of the reasons mentioned above), and
then it searches for the location for which the expected utility net
of moving costs exceeds the expected utility of staying. Other
spatially explicit urban simulation models focus in more detail
on households’ mobility due to ethnic sorting (segregation with
respect to the nationality or ethnic group) (Schelling, 1978) and
wealth preferences (clustering with respect to income) (Torrens,
2007). This background leads us to:

Open question 3: How should the decision to relocate be
modeled?

We propose three approaches (consistent with urban economic
theory) to modeling relocation behavior, each of which is likely to
apply to different agent types.

Approach 1: An agent becomes dissatisfied with his neighbor-
hood (due to a change in racial/ethnic balance, income disparities,
a decline in green amenities or public services (for example school
quality), or an increase in congestion or commute times, with two
possible action thresholds for relocation:

1. An agent’s current utility level (Uit) has fallen below the level
that he had when he first purchased the house (U�i ), (probably
by a certain threshold) Uit < U�i .

2. The utility of some other location (~Ui) that household i could
purchase given his housing budget is higher than the utility of
the current location (Uit) net of the utility of moving (Um),
~Ui > Uit � Um.

Approach 2: Household life-cycle: At thresholds defined by
household age and size, agents may form their own households,
seek an independent residence, then seek a larger residence (more
bedrooms) or higher levels of open space, neighborhood safety, or
school quality. Agents at later life stages may seek smaller resi-
dences, easier access to local amenities, high-amenity locations,
or proximity to extended family.

Approach 3: Job-following migration: If employment locations
are included in the model, then household workers may follow
shifts in employment. (Note that if employment locations shift
within the city for a given agent, the commuting times faced by
that agent may change, leading to dissatisfaction with the neigh-
borhood as discussed in point one.)

4.2.4. Modeling seller’s WTA and ask price
Open question 4: How should WTA be determined for selling

households?
Compensation for the costs paid for the current residence is

likely to determine the minimum reservation price for most sellers,
barring bankruptcy. Households relocating in the same area, how-
ever, wish to increase their utility. Thus, their WTA will be given by
the sales price that allows them to purchase the house that
achieves the minimum utility increase required to relocate; their
WTA, thus, is derived from their WTP for another house. A seller
agent has an incentive to set an ask price as high above his WTA
as the market will bear, leading to:

Open question 5: How do seller households set their ask prices?
Approach 1: Sellers may also respond to the perceived market

power of buyers by adjusting their ask price upwards in the case
of a sellers’ market, and downward in a buyers’ market. (Eq. (8)
with e from Eq. (7))

Pask ¼WTA � ð1þ eÞ ð8Þ

Approach 2: The WTA is adjusted upward or downward based
on the difference between the WTA and prices in the seller’s neigh-
borhood, dependent on a coefficient of sensitivity v e [0;1]). (Eq.
(9))

Pask ¼WTAþ v � D; where D ¼ PaverageNeighborhood �WTA ð9Þ

This approach, implemented in Filatova et al. (2007) using
Moore neighborhoods, incorporates local spatial price feedbacks,
and will reinforce the positive price effects of location-specific
amenities. As in Approach 1 in Section 4.2.2, a disadvantage is that
sellers may price their houses below their WTA, which contradicts
economic theory. A modified approach maintains links to eco-
nomic theory, while incorporating local price feedbacks. (Eq. (10))

Pask ¼MaxðWTA;PaverageNeighborhoodÞ ð10Þ

Approach 3: Rather than basing their decision on current sales
prices, sellers (or their real estate agents) may attempt to forecast
a probable sales price, as would buyers, using information about
recent comparable sales, average days on the market, and the rate
of change of prices. A variety of reinforcement learning or induc-
tive statistical models could be used to represent this process.
Obviously, if the same methods were used by both buyers and sell-
ers, bid and ask prices would be identical, and the dynamics of bid-
ding up and falling prices would not occur unless driven by pure
differences in reservation prices (which are likely to occur given
heterogeneous agents). This leads to:

Open question 6: How can differences in bid and ask prices be
modeled?

Ask price formation might rely most heavily on recent activity
in the physical neighborhood of the residence, whereas bid prices
formation might be more dependent on opportunity costs of bid-
ding on residences in different neighborhoods. Sellers might have
private information that they try to conceal through a too-high
ask price. Sellers and buyers may have heterogeneous degrees of
urgency for achieving a transaction. Finally, differences in bid
and ask prices may arise from the differential experience of bound-
edly rational real estate agents who advise buyers and sellers. If
however, theoretical and empirical models indicate that bid and
ask prices can be assumed to be the same, then the process of
negotiation need not be modeled explicitly; rather, in trades where
GFT are positive, the estimated bid/ask price can be used as the
transaction price, thereby defining the division of GFT.

4.3. New home production – developer agents

4.3.1. Developers
Developers (housing producers) serve as an intermediary be-

tween farmers willing to sell agricultural land and households will-
ing to buy a house. They buy undeveloped land, convert it to
residential land, and sell housing (see Fig. 4), meaning that they
form an interdependent WTP for the agricultural land and WTA
for new residential units. In the Muth-Mills modification of the
Alonso model (Brueckner, 1987; Strazsheim, 1987) developers
act as housing producers, maximizing profit by combining land
L(d) and capital K(d) to supply housing H(d) at location d (Eq. (11)).

HðdÞ ¼ H½LðdÞ;KðdÞ� ð11Þ

The land price R(d) is determined endogenously as a solution of
maximization problem of a developer (Eq. (12)) and defines the
developer’s WTP for agricultural land in the analytical problem.
The developer’s profit maximization problem is

maxpdx ¼ pðdÞ � HðdÞ � RagðdÞ � LðdÞ � i � KðdÞ ð12Þ

where pdx is the profit of developer x at location d, p(d) is the will-
ingness to pay of households for a unit of housing at location d,
Rag(d) is a price for agricultural land, and i is the interest rate. Devel-
opers are assumed to be price takers with respect to the price for
housing. Thus, their price expectations are based on derived de-
mand from the households, which itself comes from the theoretical
bid-rent functions derived from an Alonso-type model (Eq. (6)).

In theory, the increased WTP of households nearer to CBD
resulting from lower commutes leads to a higher optimal density
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of residences (size and proximity of residences and height of build-
ings) for developers closer to the CBD (Brueckner, 1987; Kraus,
2006). Assuming constant returns to scale, the housing producer’s
theoretically optimal structural density (SD = K/L, capital-land ra-
tio) and the developer’s WTP for agricultural land (Rag) are derived
by maximizing profit (Eq. (13)).

maxpper unit of land
dx ¼ pðdÞ � HðSD;1Þ � R� i � SD ð13Þ

Since the price for housing (p(d)) is a function of a households’
preferences, income, distance from CBD and travel costs, the struc-
tural density also depends on these drivers (Brueckner, 1987).

Empirical research suggests that developers are motivated by
market demand for housing (preferences of new-home buyers)
and are constrained by policy regulations (Levine, 2006; Levine &
Inam, 2004). Evidence also exists that developers specialize in par-
ticular kinds of development, each of which provide different levels
of private and public open-space amenities (Vigmostad, 2003).

Regardless of the complexity with which developers’ profit
maximization decisions are modeled, again a familiar challenge
presents itself—that of modeling price expectation formation for
households’ WTP when developers face heterogeneous buyers,
leading to a pair of questions:

Open question 7: How should the profit-maximizing choice of
development type be modeled?

Approach 1: For abstract theoretical models, the translation of
the Muth-Mills model with optimal density could be used to differ-
entiate housing types by density, with a pool of developer agents
created who specialize in particular development densities. This
approach does not, a-priori, account for agent heterogeneity.

Approach 2: Models of market segmentation under monopolis-
tic competition (in which sellers offer slightly specialized versions
of a good that is homogeneous in some basic characteristics) could
be adapted to reflect heterogeneous preferences of agents for
open-space amenities, commute times, and property characteris-
tics (Dixit & Stiglitz, 1977; Singh & Xavier, 1984).

Either of these approaches would require developers to esti-
mate consumers’ heterogeneous WTP functions for different devel-
opment types, leading to:

Open question 8: How should the willingness to pay of particu-
lar groups of individual buyers that appears in developers’ profit
function be estimated?

Approach 1: The urban economics literature provides some
examples of equilibrium-based models of a developer who is able
to differentiate among different groups of housing consumers
(Henderson & Thisse, 1999). The underlying assumption is that po-
tential customers have different incomes and WTP for housing,
which the developer may be able to exploit by providing both pri-
vate and public goods.6

Approach 2: Similarly to Approach 3 for seller ask price forma-
tion, boundedly rational developers estimate inductive hedonic de-
mand curves based on information about agent characteristics and
recent sales. Developers likely have access to a wide range of re-
sources and information to estimate demand—in fact, they may
have a staff of economists dedicated to that task. While the WTP
of individual buyers is private information, accepted bid prices
are public information. Thus, a hedonic demand curve for each
homogeneous housing product could be estimated through recent
sales data. Given that developers would know these estimates re-
flect interactions between supply and demand, they may set ask
prices higher than estimated WTP, then reduce housing prices if
they remain unsold.

4.3.2. Developers’ WTP for agricultural land
Open question 9: How should developers’ WTP (expected price)

for agricultural land be determined?
Approach 1: An exogenously set intertemporal opportunity cost

for agricultural production can be used as the developer’s expected
price for rural land, assuming that the developer will be able to
capture all GFT from the transaction, perhaps accurate only when
the supply of conversion land is abundant. This approach is simple,
but also grounded in economic theory.

Approach 2: In equilibrium-based models, the price for undev-
eloped land is assumed to be derived from developers’ profit func-
tion (Eq. (12)).7 Again, the equilibrium problem could be translated
into an ABM context by implementing an inductively estimated ex-
pected price for agricultural land, based on recent sales.

4.4. Price negotiation and the land transaction price

The process of determining sales prices and executing trades
(Boxes III and IV in Fig. 3) raises several questions. First:

Open question 10: How should sellers decide which bid to
accept?

Sellers status and ask prices are public information, available
easily to all buyers. Buyer’s bids may be above or below the ask
price, as discussed earlier. Two approaches are possible:

Approach 1: The seller can accept the first bid that is at or above
his ask price.

Approach 2: The seller can gather bids over a certain time
frame, then accept the highest bid that is above his WTA. That time
frame may also be endogenous, depending on average local time
on the market and rates of change of prices. To avoid the complica-
tion of buyers withdrawing during this interval, the seller agent
could collect bid prices simultaneously at a ‘‘Sunday open house,”
then decide which, if any, bid to accept at the end of the round. A
buyer then may issue a revised bid based updated estimation of
WTP and/or a bid price in the next round, if her first bid were re-
jected. In either of these approaches, the accepted price defines
the transaction price. However, when both buyers and sellers offer
their true reservations prices (WTP/WTA), another question must
be answered:

Open question 11: How should the gains from trade from the
transaction be divided?

Researchers have taken several approaches to this problem,
most involving some algorithmic division of GFT. Happe et al.
(2006) divide the GFTs using the geometric mean of WTP and
WTA, and Polhill et al. (2008) impose a Vickery auction so that
the auction winner pays the bid of the second-highest bidder.
(An overview of types of auctions and their applicability to ABM
is provided in Wooldridge (2002).) Arsenault, Nolan, and Schoney
(2007) compare the results of several alternative auction mecha-
nisms in their rural LM model, and find that the model results
are not sensitive to the auction mechanism, suggesting that in sim-
ple circumstances, models may not be sensitive to assumptions
regarding division of GFT.

A decision about whether/how to model bid and ask prices and
division of gains from trade may depend on whether cyclical hous-
ing dynamics are an important part of the research question. In the
case of irreversible conversion of open space driven by spikes in
housing demand, they may be essential to explaining observed
dynamics. However, if the purpose of the model is comparison to

6 We do not discuss migration motivated by local public goods (Tiebout, 1956)
here. A discussion of pricing decision of developer in the framework of Tiebout model
can be found elsewhere (Pines, 1991).

7 The theoretical literature presents more complex strategic models of price
negotiation with landowners from whom housing producers buy undeveloped land. A
game-theoretic approach (Asami & Teraki, 1991) analyzes the outcome of sequential
pairwise negotiations between a single developer and several landowners over the
price to be paid for land.
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other abstract, theoretical models of effects of open space on prop-
erty values, a simpler approach may suffice.

5. Confronting the conceptual model with the real world: next
steps

5.1. Benchmarks for land markets

Replication of benchmark theoretical models through simplified
versions of an ABM is an important strategy for structural model
validation (LeBaron, 2006), one that we pursue in related work
(Filatova et al., 2007; Parker & Meretsky, 2004). We used a set of
economic and spatial metrics to compare conventional model
and ABM LM. Strategies for model calibration, verification, and
validation appropriate for our model are discussed elsewhere
(Grimm et al., 2005; Lambin & Geist, 2006; Parker et al., 2003).

5.2. Empirical modeling

In principal empirical ABM offer two advantages over tradi-
tional reduced-form statistical empirical models of land conver-
sion. The first is that demand and supply can be modeled
separately, based on structural representations of utility and profit
functions, to which multiple statistical models may contribute. The
second is that the dynamics of price formation are explicitly repre-
sented, allowing for endogenous evolution of land rents in re-
sponse to shifts in factors that influence supply and demand,
relocation decisions, and in-migration by new agents.

The major challenge to translating this framework into an
empirical context, however, is to empirically parameterize those
structural utility and profit functions, so that WTP and WTA func-
tions can be derived and dynamically updated. The problem is
compounded by the fact that utility functions are not observable
or directly measurable. Further, while data are available on bid
and ask prices, we expect that those prices will be lower (higher)
than actual WTP and WTA. Finally, while data on real estate trans-
actions are available, these data represent the result of interactions
between demand and supply8 and are rarely easily matched to the
demographic characteristics of buyers or sellers.

Several approaches are possible, however, to construct empiri-
cal analogs of theoretical willingness to pay functions for buyers
and willingness to accept functions for sellers.

Approach 1: Experimental/conjoint analysis: Although there are
fundamental problems related to parameter and functional form
identification, experimental approaches have been used to identify
potential parameter weights for utility functions. In an experimen-
tal setting, agents could be endowed with budgets based on fixed
prices and allowed to trade housing ‘‘goods” with particular char-
acteristics. Alternatively, in a survey setting agents could be al-
lowed to choose among housing options based on their actual
budgets.

Approach 2: Revealed preference approaches through statistical
models that combine household and spatial survey data: In theory,
demand and supply curves can be estimated if survey data are
available that link the characteristics and preferences of buyers/
sellers to actual sales transactions. Data on the characteristics of
the residence are often linked to transaction/tax assessment re-
cords, and data on the spatial characteristics of the neighborhood
of the house could be derived through GIS. Resident surveys can
capture information about buyers who currently reside in the
house. These data provide sufficient information to estimate a de-
mand curve. Obtaining similar data on sellers, and linking that data
to homes purchased as well as homes sold, would require a seller

survey and would pose greater challenges for gathering GIS data on
sellers’ new residences.

6. Conclusions

In this paper, we have outlined a detailed conceptual model of a
LM with interactions between heterogeneous agents—buyer
households, relocating seller households, and developers. Our pro-
posed model moves beyond existing work by modeling interac-
tions between multiple agent types, modeling the process of bid
and ask price formation, and proposing agent decision models that
combine deductive optimization with inductive models of price
expectation formation. Our discussion is well grounded in eco-
nomic theory, but also is closely linked to previous cellular models
of LU originating in geography. Thus, we hope that our presenta-
tion will be of interest to both urban/environmental economists
and cellular spatial modelers and will serve to bring these two
groups closer together in knowledge and perspective.

Because restrictive assumptions and equilibrium solutions need
not be imposed on ABMs, many—perhaps too many!—choices are
available to modelers. We have outlined a series of open questions
that are inherent in making the transition for theoretical equilib-
rium-based urban economic models to agent-based residential
LMM, and we have proposed solutions to each of them. We plan
next to compare the effects of the alternative proposed solutions
within our simulation model. We also welcome feedback on these
proposed solutions, comparative modeling to explore their impli-
cations, and suggestions for additional alternatives.
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