Free agents and social networkers: modeling socio-ecological adaptation in fire-prone landscapes

John Bolte Oregon State University

Paige Fischer and Tom Spies USDA Forest Service

International Symposium on Society and Resource Management Madison, WI, June 6, 2011

Socio-Ecological Systems

- Individual actions modify, connect or disconnect
- Flows of materials and information
- Mediated by social and cultural institutions

Landscape simulation models

- Incorporate critical system features
- Represent likely real-world outcomes with some accuracy
- Useful when
 - system is complex
 - relationships are poorly understood
 - uncertainties are high

Agent-based modeling

- Actors have rules (i.e., policies, norms) that guide and constrain actions
- Actors are autonomous and adaptive agents
- Can interact through persuasion, imitation, sanctioning

Theory of individual action in Envision

Simulating individual behavior: private land owners

Management approaches

	Practices with factor loadings of		Proportion	Cronbach's				
Factor group	≥0.4	Eigenvalue	Explained	alpha				
Timber harvesting	Harvest timber for profit	2.397	14.980	0.935				
	Sell logs or other wood products							
Defensible space	Prune or limb trees	5.732	35.823	0.886				
creation	Thin by hand or with chainsaw							
	Pull by hand							
	Clear around structures							
	Make structures more fire-proof							
	Create fuel breaks							
Mechinized thinning	Thin with mechanized equipment	1.151	7.195	0.718				
	Mow, crush, grind or chip							
Cultivation	Plant fire-adapted trees	1.205	7.531	0.754				
	Shade out vegetation							
Grazing	Grazing cattle	1.020	6.375	0.464				
_	Applying herbicides							

Manager types

		Commodity-	Amenity-	Non-		
Characteristics	Sample	oriented	oriented	committal	Unlikely	
Percentage of sample	100	26.5	21.1	27.8	24.6	
						X^2
Treated acres to reduce fire risk (%)	68.9	49.3	83.8	82.6	53.5	66.106***
Very concerned about fire (%)	44	52.6	59.3	43	25.5	62.729***
Primary residents (%)	22.5	22.8	44.6	25.2	12.7	27.477***
Timber most important goal (%)	9.6	22.9	3.2	2.4	9.1	34.1***
Grazing most important goal (%)	14.6	20.3	7.4	11.3	18.2	9.636*
Residence most important goal (%)	16.8	5.1	27.7	21.8	14.5	24.533***
Real estate most important goal (%)	7.8	5.1	3.2	11.3	10.9	9.074*
Earn some income from forestry (%)	33.0	61.0	25.5	18.5	25.5	57.08***
More likely to manage with incentives (%)	73.2	85.6	83.7	76.6	48.1	45.768***
						F
Acres treated to reduce fire risk (mean)	186.9	324.6 ^a	146.4	174.9	89.9 ^a	3.964**
Parcel acreage (mean)	1240.4	1973.1 ^{ab}	735.6 ^a	1225.4	899.4 ^b	6.147***
Ownership acreage (mean)	2584.3	4031.2 ^a	1225.4^{a}	2405.9	2510.6	5.279**
* $p \le 0.05$; ** $p \le 0.01$; *** $p \le 0.001$		•				

Means with same superscripts are significantly different at $p \le 0.05$ based on Games-Howell method

Representing agents spatially

- Assign probability parcel belongs to each agent type
- Represent practices that the agent group is most likely to conduct
- Simulate resulting changes in conditions on parcel
- Simulate effects on other parcels

Simulating social influences

How to account for changes in determinants of agent behavior that result from social influences (e.g., membership to different types of organizations)? What influences who agents interact with and what they take away from those interactions?

Social structure and adaptation

- Can represent types of social structure that have bearing on adaptation:
 - Diffuse information (Granovetter 1973, Berger 2001)

- Promote local cooperation (Granovetter 1973, Bodin 2006)
- Foster learning (Bodin 2006)
- Foster innovation (Valente 1996)
- Reflect social capital (Adger 2003, Mandarano 2009, Janssen et al. 2006)

Information communication networ

Learning network

Social network analysis

- Sets of individuals or organizations and the ties between them
- Ties facilitate exchange of information, attitudes, norms, material and non– material resources
- Measures of tie density, distribution, strength, function

Hypotheses

- Participants in social networks related to natural resources management are more likely to reduce fuels
- Characteristics of social networks are important in explaining the variability in management actions of actor groups
 - <u>Homophilous</u>: common behaviors, common ideas, frequent local cooperation
 - <u>Heterophilous</u>: diversity of behaviors, nuanced understandings, innovative approaches
 - <u>Weak ties among otherwise unconnected groups</u>: balance power, build social capital, cooperation across subgroups

Network structure is associated with local material conditions, e.g., a community's exposure to biophysical risk and socio-economic vulnerability

Acknowledgements

National Science Foundation National Fire Plan CNHS research team Christine Olsen Keith Olsen